
Shallow RNNs: A Method for Accurate
Time-series

Classification on Tiny Devices*

Don Kurian Dennis, Durmus Alp Emre Acar, Vikram Mandikal, Vinu Sankar Sadasivan,
Harsha Vardhan Simhadri, Venkatesh Saligrama, Prateek Jain

*Slides to be updated.

Outline

• Introduction
• Background
• Shallow RNNs
• Results

Introduction

• Time series classification:
• Detecting events in a

continuous stream of data.
• Data partitioned into

overlapping windows (sliding
windows).
• Detection/Classification

performed on each window.

Introduction

• Time Series on Tiny Devices:
• Resource scarscity (few KBs of RAM, tiny processors)
• Cannot run standard DNN techniques.

• Examples:
• Interactive cane for people with visual impairment [24]:

• Recognizes gestures coming as time-traces on a sensor. 32kB RAM, 40MHz Processor.
• Audio-keyword classification on MXChip:

• Detect speech commands and keywords. 100MHz processor, 256KB RAM.

Background

• How to solve time series problem on tiny devices
• RNNs:

• Good fit for time series problems with long dependencies,
• Smaller models, but no parallelization [28, 14], requires O(T) time. Small but too Slow!

• CNNs:
• Can be adapted to time series problems.
• Higher parallelization [28, 14] but much larger working RAM. Fast but too big!

Shallow RNN - ShaRNN

Parallelization

Small Size

Compute Reuse

Shallow RNN - ShaRNN

• Hierarchical collection of RNNs
organized at two levels.

• Output of first layer is the
input of second layer.

• 𝑥":$ data is split into bricks of
size 𝑘.

Shallow RNN - ShaRNN

• ℛ(") RNN is applied to each
brick:
• 𝜐*

("): ℛ(") outputs.

• ℛ(") bricks:
• Operate completely in parallel,
• Fully shared parameters.

Shallow RNN - ShaRNN

• 𝑘 is hyperparameter:
• Controls inference time.

• ℛ(") bricks on 𝑘 length series

• ℛ(+) bricks on ,
-

length series

• Overall 𝑂(,
-
+ k) inference time.

• If 𝑘 = 𝑂(𝑇):
• Overall time is 𝑂 𝑇 instead of

O(T)

Results - Datasets

• Our method is able to achieve similar or better accuracy compared to baselines in all but one datasets.
• Different model sizes (different hidden-state sizes) -> numbers in bracket,

• MI-ShaRNN reports two numbers for the first and the second layer.
• Computational cost (amortized number of flops required per data point inference) for each method.
• MI refers to method of [10] which leads to smaller models and it is orthogonal to ShaRNN.

Results - Deployment

• Accuracy of different methods vs inference time cost (ms).
• Deployment on Cortex M4:

• 256KB RAM and 100MHz processor,
• The total inference time budget is 120 ms.

• Low-latency keyword spotting (Google-13).

Demo Video Here: dkdennis.xyz/static/sharnn-neurips19-demo.mp4

Thank you!

