Shallow RNNs: A Method for Accurate
Time-series
Classification on Tiny Devices*

Don Kurian Dennis, Durmus Alp Emre Acar, Vikram Mandikal, Vinu Sankar Sadasivan,
Harsha Vardhan Simhadri, Venkatesh Saligrama, Prateek Jain

*Slides to be updated.

Outline

* Introduction
* Background
 Shallow RNNs

e Results

Introduction

* Time series classification:

* Detecting eventsin a
continuous stream of data.

e Data partitioned into
overlapping windows (sliding
windows).

* Detection/Classification
performed on each window.

Event to be detected

) =

A J

Time series data

A A

A A

.4-\. _

Stride Sliding window
(w) (Num. time steps T)

Introduction

* Time Series on Tiny Devices:
e Resource scarscity (few KBs of RAM, tiny processors)
e Cannot run standard DNN techniques.

e Examples:
* Interactive cane for people with visual impairment [24]:
* Recognizes gestures coming as time-traces on a sensor. 32kB RAM, 40MHz Processor.

* Audio-keyword classification on MXChip:
* Detect speech commands and keywords. 100\MHz processor, 256KB RAM.

Background

* How to solve time series problem on tiny devices

* RNNs:

* Good fit for time series problems with long dependencies,
* Smaller models, but no parallelization [28, 14], requires O(T) time. Small but too Slow!

* CNNs:
* Can be adapted to time series problems.
* Higher parallelization [28, 14] but much larger working RAM. Fast but too big!

Shallow RNN - ShaRNN

 Parallelization
+ Small Size

v/ Compute Reuse

Shallow RNN - ShaRNN

* Hierarchical collection of RNNs - e o
organized at two levels. |
RNN — RNN — = — RNN —~ R(g) R(Q)
R! 1) 7 o
* Output of first layer is the P B U A
input of second layer. bt I NEC SN |
RO RD RO RO
* x,.7 data is split into bricks of Vo S e
size k. —

Stride w = k T time step window

Shallow RNN - ShaRNN

« R RNN is applied to each () o

v, A3
brick: | |
1 RNN — RNN — = — RNN —~ R(Q) R(Q)
. vl-(). M) outputs. R ,f o
)) Iy
X1y X2y eeey Xkt Y1 T V2 AU3
(1) . \"““*-.,,B_”zk(Bl) I |
« R'" bricks: . el
* Operate completely in parallel,
* Fully shared parameters. Nk e Taes Wkens

A

Stride w = k T time step window

Shallow RNN - ShaRNN

 k is hyperparameter:
e Controls inference time.

« R bricks on k length series

« R(2) pricks on E length series

* Overall O(E + k) inference time.

e Ifk = O(NT):
* Overall time is 0(\/7) instead of
O(T)

RNN — RNN — = — RNN —
'R.“)
X1y X2y veny Xk

REZ RE)
B S S
Il/(ll) T U(zl) *l/gl)

RO IRD L RD RO

\ |

[

| | |
R X1:k Xh+1:2k X2k+1:3k X3k+1:4k

Stridew = k

A

T time step window

Results - Datasets

Dataset Baseline LSTM MI-RNN MI-ShaRNN
Acc(%) Flops T Acc(%) Flops T’ Acc(%) Flops k
Google-13 01.13(64) 4.89M 99 03.16 (64) 242M 49 94.01 (64,32) 0.59M 8
HAR-6 93.04 (32) 1.36M 128 91.78 (32) 0.51IM 48 94.02 (32, 8) 0.17M 16
GesturePod-5 97.13(48) 8.37M 400 08.43(48) 4.19M 200 99.21 (48,32) 0.83M 20
STCI-2 99.01 (32) 2.67/M 162 908.43(32) 1.33M 81 99.23 (32,32) 0.30M 8
DSA-19 85.17 (64) 7.23M 129 88.11 (64) 5.05M 90 87.36 (64,48) 1.10M 15

Computational cost (amortized number of flops required per data point inference) for each method.
MI refers to method of [10] which leads to smaller models and it is orthogonal to ShaRNN.

Our method is able to achieve similar or better accuracy compared to baselines in all but one datasets.

Different model sizes (different hidden-state sizes) -> numbers in bracket,
* MI-ShaRNN reports two numbers for the first and the second layer.

Results - Deployment

Baseline MI-RNN MI-ShaRNN
16 32 16 32 (16, 16) (32,16)

Acc. 8699 89.84 89.78 92.61 9142 92.67

Cost 456 999 226 494 70.5 117

* Accuracy of different methods vs inference time cost (ms).

e Deployment on Cortex M4:
* 256KB RAM and 100MHz processor,
* The total inference time budget is 120 ms.

* Low-latency keyword spotting (Google-13).

Demo Video Here: dkdennis.xyz/static/sharnn-neurips19-demo.mp4

Thank youl!

