Shallow RNNs: A Method for Accurate Time-series Classification on Tiny Devices*

Don Kurian Dennis, Durmus Alp Emre Acar, Vikram Mandikal, Vinu Sankar Sadasivan, Harsha Vardhan Simhadri, Venkatesh Saligrama, Prateek Jain

Outline

- Introduction
- Background
- Shallow RNNs
- Results

Introduction

- Time series classification:
 - Detecting events in a continuous stream of data.
 - Data partitioned into overlapping windows (sliding windows).
 - Detection/Classification performed on each window.

Introduction

- Time Series on Tiny Devices:
 - Resource scarscity (few KBs of RAM, tiny processors)
 - Cannot run standard DNN techniques.
- Examples:
 - Interactive cane for people with visual impairment [24]:
 - Recognizes gestures coming as time-traces on a sensor. 32kB RAM, 40MHz Processor.
 - Audio-keyword classification on MXChip:
 - Detect speech commands and keywords. 100MHz processor, 256KB RAM.

Background

- How to solve time series problem on tiny devices
 - RNNs:
 - Good fit for time series problems with long dependencies,
 - Smaller models, but no parallelization [28, 14], requires O(T) time. Small but too Slow!
 - CNNs:
 - Can be adapted to time series problems.
 - Higher parallelization [28, 14] but much larger working RAM. Fast but too big!

✓ Parallelization

✓ Small Size

✓ Compute Reuse

- Hierarchical collection of RNNs organized at two levels.
- Output of first layer is the input of second layer.
- x_{1:T} data is split into bricks of size k.

- $\mathcal{R}^{(1)}$ RNN is applied to each brick:
 - $v_i^{(1)}$: $\mathcal{R}^{(1)}$ outputs.
- $\mathcal{R}^{(1)}$ bricks:
 - Operate completely in parallel,
 - Fully shared parameters.

- k is hyperparameter:
 - Controls inference time.
- $\mathcal{R}^{(1)}$ bricks on k length series
- $\mathcal{R}^{(2)}$ bricks on $\frac{T}{k}$ length series
- Overall $O(\frac{T}{k} + k)$ inference time.
- If $k = O(\sqrt{T})$:
 - Overall time is $O(\sqrt{T})$ instead of O(T)

Results - Datasets

Dataset	Baseline LSTM		MI	-RNN	MI-ShaRNN		
	Acc(%)	Flops 7	$\operatorname{Acc}(\%)$	Flops T'	Acc(%)	Flops k	
Google-13	91.13 (64)	4.89M 99	9 93.16 (64)	2.42M 49	94.01 (64, 32)	0.59M 8	
HAR-6	93.04 (32)	1.36M 12	28 91.78 (32)	0.51M 48	94.02 (32, 8)	0.17M 16	
GesturePod-5	97.13 (48)	8.37M 40	00 98.43 (48)	4.19M 200	99.21 (48, 32)	0.83M 20	
STCI-2	99.01 (32)	2.67M 16	<u>52</u> 98.43 (32)	1.33M 81	99.23 (32, 32)	0.30M 8	
DSA-19	85.17 (64)	7.23M 12	88.11 (64)	5.05M 90	87.36 (64, 48)	1.10M 15	

• Our method is able to achieve similar or better accuracy compared to baselines in all but one datasets.

- Different model sizes (different hidden-state sizes) -> numbers in bracket,
 - MI-ShaRNN reports two numbers for the first and the second layer.
- Computational cost (amortized number of flops required per data point inference) for each method.
- MI refers to method of [10] which leads to smaller models and it is orthogonal to ShaRNN.

Results - Deployment

	Baseline		MI-RNN		MI-ShaRNN	
	16	32	16	32	(16, 16)	(32,16)
Acc.	86.99	89.84	89.78	92.61	91.42	92.67
Cost	456	999	226	494	70.5	117

- Accuracy of different methods vs inference time cost (ms).
- Deployment on Cortex M4:
 - 256KB RAM and 100MHz processor,
 - The total inference time budget is 120 ms.
- Low-latency keyword spotting (Google-13).

Demo Video Here: *dkdennis.xyz/static/sharnn-neurips19-demo.mp4*

Thank you!