

The Edge of Machine Learning

Multiple Instance Learning for Fast, Stable and Early RNN Predictions

Don Dennis, Microsoft Research India, *Joint work with Chirag P., Harsha and Prateek Accepted to NIPS '18*

Algorithms for the IDE - EdgeML

- A library of machine learning algorithms
 - Trained on the cloud
 - Ability to run on tiniest of IoT devices

Previous Work: EdgeML Classifiers

Gupta et al., ICML '17

Kumar et al., ICML '17

Kusupati et al., NIPS '18

Code: <u>https://github.com/Microsoft/EdgeML</u>

Previous Work: EdgeML Applications

GesturePod

Wake Word

Patil et al., (to be submitted)

(work in progress)

Code: En route

Problem

- Given time series data point, classify it as a certain class.
- GesturePod:
 - Data: Accelerometer and gyroscope information
 - Task: Detect if gesture was performed

- For time series data: $X = [x_1, x_2, x_3, \dots, x_T]$ $x \in {\rm I\!R}^d$
- *T* RNN updates are performed:

$$h_t = \sigma(\mathbf{w}x_t + \mathbf{u}h_{t-1} + b)$$

• *T* is determined by the data labelling process. Example *GesturePod* – 2 seconds.

- For time series data: $X = [x_1, x_2, x_3, \dots, x_T]$ $x \in {\rm I\!R}^d$
- *T* RNN updates are performed:

$$h_t = \sigma(\mathbf{w}x_t + \mathbf{u}h_{t-1} + b)$$

• *T* is determined by the data labelling process. Example *GesturePod* – 2 seconds.

Observe how *k* << *T*.

- RNN runs over longer data point *unnecessarily large T* and prediction time.
- Predictors must recognize signatures with different offsets *requires larger* predictors.
- Sequential compute.
- Also lag.

Solution ?

Approach 1 of 2 : Exploit the fact that *k* << *T* and learn a smaller classifier. How?

• STEP 1: Divide X into smaller instances.

• STEP 1: Divide X into smaller instances.

- STEP 1: Divide X into smaller instances.
- STEP 2: Identify positive instances. Discard negative (noise) instances.

- STEP 1: Divide X into smaller instances.
- STEP 2: Identify positive instances. Discard negative (noise) instances.

- STEP 1: Divide X into smaller instances.
- STEP 2: Identify positive instances. Discard negative (noise) instances.
- STEP 3: Use these instances to train a smaller classifier.

- STEP 1: Divide X into smaller instances.
- STEP 2: Identify positive instances. Discard negative (noise) instances.
- STEP 3: Use these instances to train a smaller classifier.

How ?

- STEP 1: Divide X into smaller instances.
- STEP 2: Identify positive instances. Discard negative (noise) instances.
- STEP 3: Use these instances to train a smaller classifier.

- STEP 1: Divide X into smaller instances.
 Robust Learning
- STEP 2: Identify positive instances. Discard negative (noise) instances.
- STEP 3: Use these instances to train a smaller classifier.

- STEP 1: Divide X into smaller instances.
- STEP 2: Identify positive instances. Discard negative (noise) instances.
- STEP 3: Use these instances to train a smaller classifier.

Robust Learning

Standard techniques don't apply.

- Too much noise.
- Ignores temporal structure of the data.

- STEP 1: Divide X into smaller instances.
- STEP 2: Identify positive instances. Discard negative (noise) instances.
- STEP 3: Use these instances to train a smaller classifier.

Robust Learning

Standard techniques don't apply.

- Too much noise.
- Ignores temporal structure of the data

Traditional Multi Instance Learning (MIL)

- STEP 1: Divide X into smaller instances.
- STEP 2: Identify positive instances. Discard negative (noise) instances.
- STEP 3: Use these instances to train a smaller classifier.

Robust Learning

Standard techniques don't apply.

- Too much noise.
- Ignores temporal structure of the data

Traditional Multi Instance Learning (MIL)

Standard techniques don't apply.

- Heterogenous.
- Ignores temporal structure of the data.

Exploit temporal locality with MIL/Robust learning techniques

Property 1: Positive instances are clustered together.Property 2: Number of positive instances can be estimated.

Two phase algorithm – alternates between identifying positive instances and training on the positive instances.

• Step 1:

Assign labels Instance = source data

• Step 1:

Assign labels Instance = source data

• Step 1:

Assign labels Instance = source data

• Step 2:

• Step 2:

• Step 2:

• Step 2:

Step 2:

•

Low prediction confidence.

• Step 3:

Wherever possible, use classifier's prediction score to pick top- κ

Should satisfy property 1 and property 2

• Step 3:

Wherever possible, use classifier's prediction score to pick top- κ

Should satisfy property 1 and property 2

• Step 4:

Repeat with new labels

• Of course!

- Of course!
- Theoretical analysis:

Convergence to global optima in linear time for nice data

- Of course!
- Theoretical analysis:

Convergence to global optima in linear time for nice data

• Experiments:

Significantly improve accuracy while saving computation

- Various tasks: activity recognition, audio keyword detection, gesture recognition

Dataset	Hidden Dim	LSTM	MI-RNN	Savings %	
HAR-6 (Activity detection)	8	89.54	91.92	62.5	
	16	92.90	93.89		
	32	93.04	91.78		
Google-13 <i>(Audio)</i>	16	86.99	89.78	50.5	
	32	89.84	92.61		
	64	91.13	93.16		
WakeWord-2 (Audio)	8	98.07	98.08	50.0	
	16	98.78	99.07		
	32	99.01	98.96		

MI-RNN better than LSTM almost always

Dataset	Hidden Dim	LSTM	MI-RNN	Savings %	
HAR-6	8	89.54	<mark>91.92</mark>	62.5	
Activity detection)	16	92.90	<mark>93.89</mark>		
	32	93.04	91.78		
Google-13 <i>'Audio)</i>	16	86.99	<mark>89.78</mark>	50.5	
	32	89.84	<mark>92.61</mark>		
	64	91.13	<mark>93.16</mark>		
WakeWord-2 Audio)	8	98.07	<mark>98.08</mark>	50.0	
	16	98.78	<mark>99.07</mark>		
	32	99.01	98.96		

MI-RNN better than LSTM almost always

Dataset	Hidden Dim	LSTM	MI-RNN	Savings %
GesturePod-6 (Gesture detection)	8	-	<mark>98.00</mark>	50
	32	94.04	<mark>99.13</mark>	
	48	97.13	<mark>98.43</mark>	
DSA-19 (Activity detection)	32	84.56	<mark>87.01</mark>	28
	48	85.35	<mark>89.60</mark>	
	64	85.17	<mark>88.11</mark>	

MI-RNN: Savings?

Dataset	Hidden Dim	LSTM	Hidden Dim	MI-RNN	Savings	Savings at ~1% drop
HAR-6	32	93.04	16	93.89	10.5x	42x
Google-13	64	91.13	32	92.61	8x	32x
WakeWord-2	32	99.01	16	99.07	8x	32x
GesturePod-6	48	97.13	8	98.00	72x	-
DSA-19	64	85.17	32	87.01	5.5x	-

MI-RNN: Savings?

Dataset	Hidden Dim	LSTM	Hidden Dim	MI-RNN	Savings	Savings at ~1% drop
HAR-6	32	93.04	16	<mark>93.89</mark>	10.5x	42x
Google-13	64	91.13	32	<mark>92.61</mark>	8x	32x
WakeWord-2	32	99.01	16	<mark>99.07</mark>	8x	32x
GesturePod-6	48	97.13	8	<mark>98.00</mark>	72x	-
DSA-19	64	85.17	32	<mark>87.01</mark>	5.5x	-

MI-RNN achieves same or better accuracy with ½ or ¼ of LSTM hidden dim.

MI-RNN in Action

Synthetic MNIST:

Detecting the presence of Zero.

2 ø

MI-RNN in Action

Solution ? Approach 2 of 2 : Early Prediction How?

Can we do even better?

 For a lot of cases, looking only at a small prefix is enough to classify/reject.

Early Prediction

Can we do even better?

- Existing work:
 - Assumes pretrained classifier and uses secondary classifiers
 - Template matching approaches
 - Separate policy for early classification

• Not feasible!

Early Prediction

Our Approach

Inference: Predict at each step – stop as soon as prediction confidence is high.

Training: Incentivize early prediction by rewarding correct and early detections.

Regular Loss:
$$L(X, y) = (W^{\top}h_T - y)^2$$

Early Loss:
$$L_e(X, y) = \sum_{t=1}^T (W^\top h_t - y)^2$$

Regular Loss:
$$L(X, y) = (W^{\top}h_T - y)^2$$

Incentivizes early and consistent prediction.

Early Loss:
$$L_e(X, y) = \sum_{t=1}^T (W^\top h_t - y)^2$$

Abysmally bad 😕

- Abysmally bad 🙁
- In GesturePod-6, we loose 10-12% accuracy attempting to predict early.

- Abysmally bad 🟵
- In GesturePod-6, we loose 10-12% accuracy attempting to predict early.
- Gets confused easily due to common prefixes!

- MI-RNN can help!
- Instances are very tight around signatures.

- MI-RNN can help!
- Instances are very tight around signatures.

- MI-RNN can help!
- Instances are very tight around signatures.
- Low confusion common prefixes are small.

- Combine the MI-RNN training routine with E-RNN loss function and train jointly.
- Not only do you predict on smaller windows, but you predict early very often!

EMI-RNN: Results

EMI-RNN: Results

For HAR-6, we are 8x faster at 8 hidden size wth better accuracy

EMI-RNN: Results

Comparing across hidden sizes, savings amplify by 4-16x

Raspberry PiO

Device	Hidden Dim.	LSTM (ms)	MI-RNN (ms)	EMI-RNN (ms)
RPi0 (22.5 ms)	16	28.14	14.06	5.62
	32	74.46	37.41	<mark>14.96</mark>
	64	226.1	112.6	45.03
RPi3 (26.39 ms)	16	12.76	6.48	2.59
	32	33.10	16.47	6.58
	64	92.09	46.28	<mark>18.51</mark>

1GHz, Single-core CPU - 512MB RAM

Conclusions and Future Work

- 8x 72x savings with MI-RNN. Additional savings from early prediction.
- Better or match LSTM performance.
- 10x performance gain away from Arduino class devices:
 - EMI-FastGRNN
 - Rolling LSTM

Thank You!

Next Talk

Support Recovery for Orthogonal Matching Pursuit: Upper and Lower Bounds

Somani et al., NIPS '18