
The Edge of Machine Learning

Don Dennis,
Microsoft Research India,
Joint work with Chirag P., Harsha and Prateek
Accepted to NIPS ’18

Multiple Instance Learning 
for Fast, Stable and Early 
RNN Predictions

1



Algorithms for the IDE - EdgeML

• A library of machine learning algorithms
• Trained on the cloud
• Ability to run on tiniest of IoT devices

Arduino Uno
2



Code: https://github.com/Microsoft/EdgeML

Previous Work: EdgeML Classifiers

BonsaiProtoNN Fast(G)RNN

Gupta et al., ICML ’17 Kumar et al., ICML ’17 Kusupati et al., NIPS ’18

3

https://github.com/Microsoft/EdgeML


Code: En route

Previous Work: EdgeML Applications

Wake WordGesturePod

Patil et al.,
(to be submitted) (work in progress)

4



Problem

5



Problem

• Given time series data point, classify it as a certain class.

• GesturePod:

– Data: Accelerometer and gyroscope information

– Task: Detect if gesture was performed

6



Problem

7



Problem

8



Problem

9

ProtoNN and Bonsai



Problem

10

Expensive!
Prohibitive on IoT 

Devices

ProtoNN and Bonsai



RNNs are Expensive

• For time series data:

• T RNN updates are performed: 

• T is determined by the data labelling process. Example GesturePod – 2 seconds.

11



RNNs are Expensive

• For time series data:

• T RNN updates are performed: 

• T is determined by the data labelling process. Example GesturePod – 2 seconds.

12



RNNs are Expensive

Observe how k << T. 

• RNN runs over longer data point – unnecessarily large T and prediction time.

• Predictors must recognize signatures with different offsets - requires larger predictors.

• Sequential compute.

• Also lag. 13



RNNs are Expensive

14

Solution ? 

Approach 1 of 2 : Exploit the fact that k << T and learn a smaller classifier.

How?



How ?

• STEP 1: Divide X into smaller 
instances.

15



How ?

• STEP 1: Divide X into smaller 
instances.

16



How ?

• STEP 1: Divide X into smaller 
instances.

• STEP 2: Identify positive 
instances. Discard negative 
(noise) instances.

17



How ?

• STEP 1: Divide X into smaller 
instances.

• STEP 2: Identify positive 
instances. Discard negative 
(noise) instances.

18



How ?

• STEP 1: Divide X into smaller 
instances.

• STEP 2: Identify positive 
instances. Discard negative 
(noise) instances.

• STEP 3: Use these instances 
to train a smaller classifier.

19



How ?

• STEP 1: Divide X into smaller 
instances.

• STEP 2: Identify positive 
instances. Discard negative 
(noise) instances.

• STEP 3: Use these instances 
to train a smaller classifier.

20

Note! Most of the instances 
are just noise.



How ?

• STEP 1: Divide X into smaller 
instances.

• STEP 2: Identify positive 
instances. Discard negative 
(noise) instances.

• STEP 3: Use these instances 
to train a smaller classifier.

21



How ?

• STEP 1: Divide X into smaller 
instances.

• STEP 2: Identify positive 
instances. Discard negative 
(noise) instances.

• STEP 3: Use these instances 
to train a smaller classifier.

22

Robust Learning



How ?

• STEP 1: Divide X into smaller 
instances.

• STEP 2: Identify positive 
instances. Discard negative 
(noise) instances.

• STEP 3: Use these instances 
to train a smaller classifier.

23

Robust Learning
Standard techniques don’t apply. 
• Too much noise. 
• Ignores temporal structure of the 

data.



How ?

• STEP 1: Divide X into smaller 
instances.

• STEP 2: Identify positive 
instances. Discard negative 
(noise) instances.

• STEP 3: Use these instances 
to train a smaller classifier.

24

Robust Learning

Traditional Multi Instance
Learning (MIL)

Standard techniques don’t apply. 
• Too much noise. 
• Ignores temporal structure of the 

data



How ?

• STEP 1: Divide X into smaller 
instances.

• STEP 2: Identify positive 
instances. Discard negative 
(noise) instances.

• STEP 3: Use these instances 
to train a smaller classifier.

25

Robust Learning
Standard techniques don’t apply. 
• Too much noise. 
• Ignores temporal structure of the 

data

Traditional Multi Instance
Learning (MIL)

Standard techniques don’t apply.
• Heterogenous.
• Ignores temporal structure of the 

data.



How ?

Property 1: Positive instances are clustered together.

Property 2: Number of positive instances can be estimated.

Exploit temporal locality with MIL/Robust learning techniques

26



Algorithm: MI-RNN

Two phase algorithm – alternates between identifying positive 
instances and training on the positive instances.

27



Algorithm: MI-RNN

• Step 1: 
Assign labels 

Instance = source data

28



Algorithm: MI-RNN

• Step 1: 
Assign labels 

Instance = source data

29



Algorithm: MI-RNN

• Step 1: 
Assign labels 

Instance = source data

30



Algorithm: MI-RNN

• Step 2: 
Train classifier on this data

31



Algorithm: MI-RNN

• Step 2: 
Train classifier on this data

32

True positive instances
Correctly labeled



Algorithm: MI-RNN

• Step 2: 
Train classifier on this data

33

True positive instances
Correctly labeled

Mislabeled instances
Common to all classes



Algorithm: MI-RNN

• Step 2: 
Train classifier on this data

34

Common to all classes



Algorithm: MI-RNN

• Step 2: 
Train classifier on this data

35

Common to all classes

Classifier will be confused. 
Low prediction confidence.



Algorithm: MI-RNN

• Step 3: 
Wherever possible, use 
classifier’s prediction score 
to pick top-κ

Should satisfy property 1 
and property 2

36

Top-κ



Algorithm: MI-RNN

• Step 3: 
Wherever possible, use 
classifier’s prediction score 
to pick top-κ

Should satisfy property 1 
and property 2

37

Top-κ



Algorithm: MI-RNN

• Step 4: 
Repeat with new labels

38



MI-RNN: Does It Work?

39



MI-RNN: Does It Work?

• Of course!

40



MI-RNN: Does It Work?

• Of course!

• Theoretical analysis: 

Convergence to global optima in linear time for nice data

41



MI-RNN: Does It Work?

• Of course!

• Theoretical analysis: 

Convergence to global optima in linear time for nice data

• Experiments:

Significantly improve accuracy while saving computation

– Various tasks: activity recognition, audio keyword detection, gesture recognition

42



MI-RNN: Does It Work?

43

Dataset Hidden 
Dim

LSTM MI-RNN Savings %

HAR-6
(Activity detection)

8 89.54 91.92 62.5

16 92.90 93.89

32 93.04 91.78

Google-13
(Audio)

16 86.99 89.78 50.5

32 89.84 92.61

64 91.13 93.16

WakeWord-2
(Audio)

8 98.07 98.08 50.0

16 98.78 99.07

32 99.01 98.96



MI-RNN: Does It Work?

44

Dataset Hidden 
Dim

LSTM MI-RNN Savings %

HAR-6
(Activity detection)

8 89.54 91.92 62.5

16 92.90 93.89

32 93.04 91.78

Google-13
(Audio)

16 86.99 89.78 50.5

32 89.84 92.61

64 91.13 93.16

WakeWord-2
(Audio)

8 98.07 98.08 50.0

16 98.78 99.07

32 99.01 98.96

MI-RNN better than 
LSTM almost always



MI-RNN: Does It Work?

45

MI-RNN better than 
LSTM almost always

Dataset Hidden 
Dim

LSTM MI-RNN Savings %

GesturePod-6
(Gesture detection)

8 - 98.00 50

32 94.04 99.13

48 97.13 98.43

DSA-19
(Activity detection)

32 84.56 87.01 28

48 85.35 89.60

64 85.17 88.11



MI-RNN: Savings?

46

Dataset Hidden 
Dim

LSTM Hidden 
Dim

MI-RNN Savings Savings at 
~1% drop

HAR-6 32 93.04 16 93.89 10.5x 42x

Google-13 64 91.13 32 92.61 8x 32x

WakeWord-2 32 99.01 16 99.07 8x 32x

GesturePod-6 48 97.13 8 98.00 72x -

DSA-19 64 85.17 32 87.01 5.5x -



MI-RNN: Savings?

47

Dataset Hidden 
Dim

LSTM Hidden 
Dim

MI-RNN Savings Savings at 
~1% drop

HAR-6 32 93.04 16 93.89 10.5x 42x

Google-13 64 91.13 32 92.61 8x 32x

WakeWord-2 32 99.01 16 99.07 8x 32x

GesturePod-6 48 97.13 8 98.00 72x -

DSA-19 64 85.17 32 87.01 5.5x -

MI-RNN achieves same or better accuracy 
with ½ or ¼ of LSTM hidden dim.



MI-RNN in Action

48

Synthetic MNIST:
Detecting the presence of Zero.



49

MI-RNN in Action



RNNs are Expensive

50

Solution ? 

Approach 2 of 2 : Early Prediction

How?



Can we do even better?

• For a lot of cases, looking 
only at a small prefix is 
enough to classify/reject.

Early Prediction

51



Can we do even better?

• Existing work:

– Assumes pretrained classifier 
and uses secondary classifiers

– Template matching approaches

– Separate policy for early 
classification

• Not feasible!

52



Early Prediction

Our Approach

Inference: Predict at each step – stop as soon as prediction 
confidence is high.

Training: Incentivize early prediction by rewarding correct and 
early detections.

53



Algorithm: E-RNN

54

Early Loss:

Regular Loss:



Algorithm: E-RNN

55

Early Loss:

Regular Loss:

Incentivizes early and 
consistent prediction.



E-RNN: How well does it work?

56



E-RNN: How well does it work?

57

• Abysmally bad 



E-RNN: How well does it work?

58

• Abysmally bad 

• In GesturePod-6, we loose 10-12% accuracy attempting to 
predict early.



E-RNN: How well does it work?

59

• Abysmally bad 

• In GesturePod-6, we loose 10-12% accuracy attempting to 
predict early.

• Gets confused easily due to common prefixes!

Positive datapoint

Negative datapoint



E-RNN: How well does it work?

60

• MI-RNN can help!

• Instances are very tight 
around signatures.

Positive datapoint

Negative datapoint



E-RNN: How well does it work?

61

• MI-RNN can help!

• Instances are very tight 
around signatures.

Positive datapoint

Negative datapoint



E-RNN: How well does it work?

62

• MI-RNN can help!

• Instances are very tight 
around signatures.

• Low confusion - common 
prefixes are small.

Positive datapoint

Negative datapoint



Algorithm: EMI-RNN

63

• Combine the MI-RNN training routine with E-RNN loss function 
and train jointly.

• Not only do you predict on smaller windows, but you predict 
early very often!



EMI-RNN: Results

64



EMI-RNN: Results

65

For HAR-6, we are 8x 
faster at 8 hidden size 
wth better accuracy



EMI-RNN: Results

66

Comparing across hidden 
sizes, savings amplify by

4-16x



Raspberry Pi0

67

Device Hidden Dim. LSTM (ms) MI-RNN (ms) EMI-RNN (ms)

RPi0
(22.5 ms)

16 28.14 14.06 5.62

32 74.46 37.41 14.96

64 226.1 112.6 45.03

RPi3
(26.39 ms)

16 12.76 6.48 2.59

32 33.10 16.47 6.58

64 92.09 46.28 18.51

1GHz, Single-core CPU - 512MB RAM



Conclusions and Future Work

• 8x – 72x savings with MI-RNN. Additional savings from early 
prediction.

• Better or match LSTM performance.

• 10x performance gain away from Arduino class devices:
• EMI-FastGRNN

• Rolling LSTM

68



Thank You!

69



Next Talk

Support Recovery for 
Orthogonal Matching Pursuit: 

Upper and Lower Bounds

Somani et al., NIPS ’18

70


