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4 Recurrent Neural Networks (RNN)
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,, e State-of-the art for time series.

5  Datais divided into
overlapping windows and an
RNN is run over each.

 Each RNN run is a sequence of updates to its internal state.
* The state update rule: complicated, non-linear and expensive.
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* Key-word spotting: Feature computation + prediction every 30ms for
real-time response! Vanilla LSTM takes

Typical class signature length k << T

 Example: Keyword spotting --- keyword ‘Up’ usually 100-200ms (k)
while the RNN window T ~ 1 second.

 Learning on these: k ( << T) step RNN.

* Common prefixes are small : predict early.
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MI-RNN: Multiple-Instance RNN
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* Divide into bag of overlapping k length windows (instances).
* |solate the instances with signature. Relabel these instances and train.

in general! ©°©

Exploit temporal locality and approximate signature length with
MIL/Robust learning techniques in the optimization problem.

Formulation learns model f as well as starting index s, of the class signature
in each data point
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Algorithm
Step 1: Assign labels (Z;;, Viz),S. t. Vi = y;,V T
Step 2: Train classifier f; on this miss-labelled data

Step 3: Score(si)=2‘7i+Kft(Zij) and pick argmaxg, Score(s;)

j=si

Step 4: Update labels. Repeat with new labels
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Unique to this class.
High confidence.

Common among
classes. Low confidence.

Theorem: In O(logn) iterations, the true positive set
will be recovered exactly, with high prob.

Setting:

- Two classes: Z}', --- negative class instances sampled from a
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Contributions

* EMI-RNN: exploits temporal structure and above observations
e USP: a) higher accuracy than baseline RNN architectures
b) reduce inference time by as much as 72x
c) Allows deployment on tiny devices like Raspberry Pi0, M4 MCU

e Techniques: multi-instance learning (MIL) + early prediction

* Analysis: recovers provably optimal solution in non-homogeneous MIL
settings --- first such result for non-homogeneous MIL

Gaussian with mean u~

« Z;, --- positive class instances, lie in a small ball around p*
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EMI-RNN: Early Multi-Instance RNN
Common Prefix: Long common prefix
Cannot classify till this point F - - T - - - - -=-=-=-=-=-==-=7 '
] Much ._shsrt_er EDE‘II"IlOI:I. prefix :
Positive datapoint _/\E__’\/\: :
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Naive early prediction due to common prefixes MI-RNN removes common prefixes making early prediction effective
T
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Incentivize early prediction during training EMI-RNN: Jointly train MI-RNN e( ) Y) — V i \
with early loss
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EMI-RNN: Multiple Instance Learning for Efficient Sequential Data Classification on Resource Constrained Devices

Harsha Vardhan Simhadri

github.com/Microsoft/EdgeML
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Fraction compute compared to beat LSTM accuracy. (w/o early prediction)

Device

RPiO
(22.5 ms)

LSTM
(ms)

MI-RNN
(ms)
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Dim.
16
32

Accuracy Accuracy

64
RPi3 16
(26.39 ms) 32

64

Execution time on Raspberry PiO and Pi3. Real-time constraint in parenthesis.
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