
EMI-RNN: Multiple Instance Learning for Efficient Sequential Data Classification on Resource Constrained Devices
Don Kurian Dennis Chirag Pabbaraju Harsha Vardhan Simhadri Prateek Jain

MI-RNN: Multiple-Instance RNN Results

EMI-RNN: Early Multi-Instance RNN

github.com/Microsoft/EdgeML

Recurrent Neural Networks (RNN)

Incentivize early prediction during training EMI-RNN: Jointly train MI-RNN
with early loss

• Divide into bag of overlapping k length windows (instances).
• Isolate the instances with signature. Relabel these instances and train.

• NP-Hard in general!

Exploit temporal locality and approximate signature length with
MIL/Robust learning techniques in the optimization problem.

Formulation learns model f as well as starting index si of the class signature
in each data point

Naïve early prediction difficult due to common prefixes

Positive datapoint

Negative datapoint

Algorithm
Step 1: Assign labels (𝑍𝑖𝜏, 𝑦𝑖𝜏), 𝑠. 𝑡. 𝑦𝑖𝜏 = 𝑦𝑖 , ∀ 𝜏
Step 2: Train classifier 𝑓𝑡 on this miss-labelled data

Step 3: Score(𝑠𝑖)=σ𝑗=𝑠𝑖

𝑠𝑖+𝜅 𝑓𝑡(𝑍𝑖𝑗) and pick 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑖 𝑆𝑐𝑜𝑟𝑒(𝑠𝑖)

Step 4: Update labels. Repeat with new labels Unique to this class.
High confidence.

Common among
classes. Low confidence.

MI-RNN removes common prefixes making early prediction effective

Positive datapoint

Negative datapoint

Contributions

• EMI-RNN: exploits temporal structure and above observations

• USP: a) higher accuracy than baseline RNN architectures
b) reduce inference time by as much as 72x
c) Allows deployment on tiny devices like Raspberry Pi0, M4 MCU

• Techniques: multi-instance learning (MIL) + early prediction

• Analysis: recovers provably optimal solution in non-homogeneous MIL
settings --- first such result for non-homogeneous MIL

min
𝑓, 𝑠𝑖,1≤ 𝑖 ≤ 𝑛

1

𝑛
෍

𝑖,𝜏

𝛿𝑖𝜏 ⋅ ℓ (𝑓 𝑍𝑖𝜏 , 𝑦𝑖)), 𝑠. 𝑡. , 𝛿𝑖𝜏 = ቊ
1, 𝜏 ∈ [𝑠𝑖 , 𝑠𝑖 + 𝜅]
0, 𝜏 ∉ [𝑠𝑖 , 𝑠𝑖 + 𝜅]

Setting:

• Two classes: 𝑍𝑖,𝜏
𝑁 --- negative class instances sampled from a

Gaussian with mean 𝜇−

• 𝑍𝑖,𝜏
𝑃 --- positive class instances, lie in a small ball around 𝜇+

• ||𝜇+ − 𝜇−|| ≥ 𝐶 log 𝑇

• Let 𝑛 ≥
𝑑𝑇||𝜇+−𝜇−||2|

𝑘2

Theorem: In 𝑂(log 𝑛) iterations, the true positive set
will be recovered exactly, with high prob.

75

80

85

90

95

100

8 16 32 16 32 64 8 16 32 8 32 48 32 48 64

HAR-6 (Activity) Google-13
(Audio)

WakeWord-2
(Audio)

GesturePod-6
(Gesture)

DSA-19 (Activity)

Accuracy

LSTM MI-LSTM

No. of hidden units

K=48, T=128 k=49, T=99 k=81, T=162 k=200, T=400 k=90, T=129

0.9304

0.9113

0.9901

0.9713

0.8517

0.9389

0.9261

0.9907

0.98

0.8701

0.095238095

0.125

0.125

0.013888889

0.181818182

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HAR-6

Google-13

WakeWord-2

GesturePod-6

DSA-19

Frac. Compute

Frac Compute MI-RNN Acc LSTM Acc

Fraction compute compared to beat LSTM accuracy. (w/o early prediction)

Bag 𝑍𝑖

𝛿𝑖𝜏 = 0 𝛿𝑖𝜏 = 0

𝛿𝑖𝜏 = 1

Instance 𝑍𝑖𝜏

• State-of-the art for time series.
• Data is divided into

overlapping windows and an
RNN is run over each.

Window

𝐡𝐭 = 𝜎(W𝐱𝒕+ U𝐡𝐭 − 𝟏+ 𝐛)

• Each RNN run is a sequence of updates to its internal state.
• The state update rule: complicated, non-linear and expensive.

• Prohibitively expensive for edge devices
• Key-word spotting: Feature computation + prediction every 30ms for

real-time response! Vanilla LSTM takes 64ms!

Typical class signature length k << T

• Example: Keyword spotting --- keyword ‘Up’ usually 100-200ms (k)
while the RNN window T ~ 1 second.

• Learning on these: k (<< T) step RNN.
• Common prefixes are small : predict early.
• Class signature can lie anywhere!

Device
Hidden

Dim.
LSTM
(ms)

Accuracy
MI-RNN

(ms)
Accuracy

EMI-RNN
(ms)

RPi0
(22.5 ms)

16 28.14 86.99 14.06 89.78 5.62
32 74.46 89.84 37.41 92.61 14.96
64 226.1 91.13 112.6 93.16 45.03

RPi3
(26.39 ms)

16 12.76 86.99 6.48 89.78 2.59
32 33.1 89.84 16.47 92.61 6.58
64 92.09 91.13 46.28 93.16 18.51

EMI-RNN: Computation Savings vs Accuracy Gain

Execution time on Raspberry Pi0 and Pi3. Real-time constraint in parenthesis.

Le(𝐗, 𝐲) = ෍

t=1

T

𝐯⊤𝐡𝐭 − 𝐲 2

